Real-Time Optimization: Optimizing the Operation of Energy Systems in the Presence of Uncertainty and Disturbances
نویسندگان
چکیده
In practice, the quest for the optimal operation of energy systems is complicated by the simultaneous presence of operating constraints, among which the need for producing the power required by the user, and of uncertainty. The latter concept incorporates the potential inaccuracies of the models at hand but also degradation effects or unexpected changes, such as, e.g. random load changes or variations of the availability of the energy source for renewable energy systems. Since these changes affect the optimal values of the operating conditions, online adaptation is required to ensure that the system is always operated optimally. This typically implies the online solving of an optimization problem. Unfortunately, the applicability and the performances of most model-based optimization methods rely on the quality of the available model of the system under investigation. On the other hand, Real-Time Optimization (RTO) methods use the available online measurements in the optimization framework and are, thus, capable of bringing the desired self-optimizing control reaction. In this article, we show the benefits of using several RTO methods (co-) developed by the authors to energy systems through the successful application of (i) “Real-Time Optimization via Modifier Adaptation” to an experimental Solid Oxide Fuel Cells (SOFC) stack, of (ii) the recently released “SCFO-solver 1 ” to an industrial SOFC stack, and of (iii) Dynamic RTO to a simulated tethered kite for renewable power production. It is shown how such problems can be formulated and solved and significant improvements of the performances of the three aforementioned energy systems are illustrated.
منابع مشابه
Optimal Operation of Integrated Energy Systems Considering Demand Response Program
This study presents an optimal framework for the operation of integrated energy systems using demand response programs. The main goal of integrated energy systems is to optimally supply various demands using different energy carriers such as electricity, heating, and cooling. Considering the power market price, this work investigates the effects of multiple energy storage devices and demand res...
متن کاملDynamic Planning the Expansion of Electric Energy Distribution Systems Considering Distributed Generation Resources in the Presence of Power Demand Uncertainty
In this paper, a new strategy based on a dynamic (time-based) model is proposed for expansion planning of electrical energy distribution systems, taking into account distributed generation resources and advantage of the techno-economic approach. In addition to optimal placement and capacity, the proposed model is able to determine the timing of installation / reinforcement of expansion options....
متن کاملOptimal Operation of Microgrid in the presence of Real-time Pricing Demand Response Program using Artificial Bee Colony Algorithm with a Modified Choice Function
Abstract: Microgrid is one of the newest technologies in power systems. Microgrid can usually has a set of distributed energy resources that makes it able to operate separate from power grid. Optimal operation of microgrids means the optimal dispatch of power resources through day and night hours. This thesis proposed a new method for optimal operation of microgrid. In this method, real-time pr...
متن کاملTwo-Stage Stochastic Day-Ahead Market Clearing in Gas and Power Networks Integrated with Wind Energy
The significant penetration rate of wind turbines in power systems made some challenges in the operation of the systems such as large-scale power fluctuations induced by wind farms. Gas-fired plants with fast starting ability and high ramping can better handle natural uncertainties of wind power compared to other traditional plants. Therefore, the integration of electrical and natural gas syste...
متن کاملReal -Time Pricing Design Considering Uncertainty of Renewable Energy Resources and Thermal Loads in Smart Grids
In this paper, a novel real time pricing design is presented for Demand Response (DR) programs. A Load Serving Entity (LSE) is responsible to provide energy for flexible loads, inflexible loads and thermal loads. The LSE consider operation conditions of system and uncertainty of renewable energy resources and it designs a Real Time Price (RTP) demand response. The inflexible and thermal loads c...
متن کامل